Package: evalITR 1.0.0
Michael Lingzhi Li
evalITR: Evaluating Individualized Treatment Rules
Provides various statistical methods for evaluating Individualized Treatment Rules under randomized data. The provided metrics include Population Average Value (PAV), Population Average Prescription Effect (PAPE), Area Under Prescription Effect Curve (AUPEC). It also provides the tools to analyze Individualized Treatment Rules under budget constraints. Detailed reference in Imai and Li (2019) <arxiv:1905.05389>.
Authors:
evalITR_1.0.0.tar.gz
evalITR_1.0.0.zip(r-4.5)evalITR_1.0.0.zip(r-4.4)evalITR_1.0.0.zip(r-4.3)
evalITR_1.0.0.tgz(r-4.4-any)evalITR_1.0.0.tgz(r-4.3-any)
evalITR_1.0.0.tar.gz(r-4.5-noble)evalITR_1.0.0.tar.gz(r-4.4-noble)
evalITR_1.0.0.tgz(r-4.4-emscripten)evalITR_1.0.0.tgz(r-4.3-emscripten)
evalITR.pdf |evalITR.html✨
evalITR/json (API)
NEWS
# Install 'evalITR' in R: |
install.packages('evalITR', repos = c('https://michaellli.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/michaellli/evalitr/issues
- star - Tennessee’s Student/Teacher Achievement Ratio (STAR) project
Last updated 1 years agofrom:50d68e9c98. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 09 2024 |
R-4.5-win | NOTE | Nov 09 2024 |
R-4.5-linux | NOTE | Nov 09 2024 |
R-4.4-win | NOTE | Nov 09 2024 |
R-4.4-mac | NOTE | Nov 09 2024 |
R-4.3-win | NOTE | Nov 09 2024 |
R-4.3-mac | NOTE | Nov 09 2024 |
Exports:AUPECAUPECcvconsist.testconsistcv.testestimate_itrevaluate_itrGATEGATEcvhet.testhetcv.testPAPDPAPDcvPAPEPAPEcvPAVPAVcvplot_estimatetest_itr
Dependencies:bartCausebitbit64bitopscaretcaToolsclassclicliprclockcodetoolscolorspacecpp11crayoncvAUCdata.tabledbartsdiagramDiceKrigingdigestdistributionaldplyre1071fansifarverforcatsforeachfuturefuture.applygamgbmgenericsggdistggplot2ggthemesglmnetglobalsgluegowergplotsgrfgtablegtoolshardhathavenhmshqreghrqglasipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlmtestlubridatemagrittrMASSMatrixMatrixModelsmgcvModelMetricsmunsellnlmennetnnlsnumDerivparallellypillarpkgconfigplyrprettyunitspROCprodlimprogressprogressrproxypurrrquadprogquantregR6rbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackreadrrecipesreshape2rlangROCRrpartrqPensandwichscalesshapeSparseMSQUAREMstringistringrSuperLearnersurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitevroomwithrzoo
Compare Estimated and User Defined ITR
Rendered fromuser_itr_algs.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2023-08-21
Started: 2023-06-06
Cross-validation with multiple ML algorithms
Rendered fromcv_multiple_alg.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2023-08-26
Started: 2023-05-26
Cross-validation with single algorithm
Rendered fromcv_single_alg.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2023-08-21
Started: 2023-05-26
Installation
Rendered frominstall.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2023-05-26
Started: 2023-05-22
paper_alg1
Rendered frompaper_alg1.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2023-07-13
Started: 2023-07-13
Sample Splitting
Rendered fromsample_split.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2023-08-21
Started: 2023-05-25
Sample Splitting with Caret/SuperLearner
Rendered fromsample_split_caret.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2023-08-26
Started: 2023-05-25
User Defined ITR
Rendered fromuser_itr.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2023-08-21
Started: 2023-06-05