Package: evalITR (via r-universe)

September 10, 2024

```
Title Evaluating Individualized Treatment Rules
Version 1.0.0
Date 2023-08-20
Maintainer Michael Lingzhi Li <mili@hbs.edu>
Description Provides various statistical methods for evaluating
     Individualized Treatment Rules under randomized data. The
     provided metrics include Population Average Value (PAV),
     Population Average Prescription Effect (PAPE), Area Under
     Prescription Effect Curve (AUPEC). It also provides the tools
     to analyze Individualized Treatment Rules under budget
     constraints. Detailed reference in Imai and Li (2019)
     <arXiv:1905.05389>.
License GPL (>=2)
URL https://github.com/MichaelLLi/evalITR,
     https://michaellli.github.io/evalITR/,
     https://jialul.github.io/causal-ml/
BugReports https://github.com/MichaelLLi/evalITR/issues
Depends dplyr (>= 1.0), MASS (>= 7.0), Matrix (>= 1.0), quadprog (>=
     1.0), R (>= 3.5.0), stats
Imports caret, cli, e1071, forcats, gbm, ggdist, ggplot2, ggthemes,
     glmnet, grf, haven, purrr, rlang, rpart, rqPen, scales, utils,
     bartCause, SuperLearner
Suggests doParallel, furrr, knitr, rmarkdown, testthat, bartMachine,
     elasticnet, randomForest, spelling
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.2.2
Language en-US
Repository https://michaellli.r-universe.dev
```

2 Contents

 $\pmb{RemoteUrl} \ \ https://github.com/michaellli/evalitr$

RemoteRef HEAD

RemoteSha 50d68e9c985738aa7a1cb982545bba3255390482

Contents

Index

AUPEC	. 3
AUPECcv	. 4
compute_qoi	. 5
compute_qoi_user	. 5
consist.test	. 6
consistev.test	. 7
create_ml_args	. 8
create_ml_args_bart	. 9
create_ml_args_bartc	. 9
create_ml_args_causalforest	. 9
create_ml_args_lasso	. 10
create_ml_args_superLearner	. 10
create_ml_args_svm	. 10
create_ml_args_svm_cls	. 11
create_ml_arguments	. 11
estimate_itr	. 12
evaluate_itr	. 13
fit_itr	. 14
GATE	. 15
GATEcv	. 16
het.test	. 17
hetcv.test	. 18
PAPD	. 19
PAPDcv	. 20
PAPE	. 22
PAPEcv	. 23
PAV	. 24
PAVcv	. 25
plot.itr	. 26
plot_estimate	
print.summary.itr	
print.summary.test_itr	. 28
star	. 28
summary.itr	
summary.test_itr	
test itr	
_	

31

AUPEC 3

AUPEC	Estimation of the Area Under Prescription Evaluation Curve (AU-PEC) in Randomized Experiments

Description

This function estimates AUPEC. The details of the methods for this design are given in Imai and Li (2019).

Usage

```
AUPEC(T, tau, Y, centered = TRUE)
```

Arguments

T	A vector of the unit-level binary treatment receipt variable for each sample.
tau	A vector of the unit-level continuous score for treatment assignment. We assume those that have tau<0 should not have treatment. Conditional Average Treatment Effect is one possible measure.
Υ	A vector of the outcome variable of interest for each sample.
centered	If TRUE, the outcome variables would be centered before processing. This minimizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

aupec	The estimated Area Under Prescription Evaluation Curve
sd	The estimated standard deviation of AUPEC.
vec	A vector of points outlining the AUPEC curve across each possible budget point for the dataset. Each step increases the budget by 1/n where n is the number of data points.

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2019). "Experimental Evaluation of Individualized Treatment Rules",

4 AUPECcv

Examples

```
T = c(1,0,1,0,1,0,1,0)
tau = c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7)
Y = c(4,5,0,2,4,1,-4,3)
aupeclist <- AUPEC(T,tau,Y)
aupeclist$aupec
aupeclist$sd
aupeclist$vec</pre>
```

AUPECcv

Estimation of the Area Under Prescription Evaluation Curve (AU-PEC) in Randomized Experiments Under Cross Validation

Description

This function estimates AUPEC. The details of the methods for this design are given in Imai and Li (2019).

Usage

```
AUPECcv(T, tau, Y, ind, centered = TRUE)
```

Arguments

T A vector of the unit-level binary treatment receipt variable for each sample.

tau A matrix where the ith column is the unit-level continuous score for treatment

assignment generated in the ith fold.

Y The outcome variable of interest.

ind A vector of integers (between 1 and number of folds inclusive) indicating which

testing set does each sample belong to.

centered If TRUE, the outcome variables would be centered before processing. This mini-

mizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

aupec The estimated AUPEC.

sd The estimated standard deviation of AUPEC.

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

compute_qoi 5

References

Imai and Li (2019). "Experimental Evaluation of Individualized Treatment Rules",

Examples

```
 T = c(1,0,1,0,1,0,1,0) \\ tau = matrix(c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7,0.9), nrow = 8, ncol = 2) \\ Y = c(4,5,0,2,4,1,-4,3) \\ ind = c(rep(1,4),rep(2,4)) \\ aupeclist <- AUPECcv(T, tau, Y, ind) \\ aupeclist$aupec \\ aupeclist$sd
```

compute_qoi

Compute Quantities of Interest (PAPE, PAPEp, PAPDp, AUPEC, GATE, GATEcv)

Description

Compute Quantities of Interest (PAPE, PAPEp, PAPDp, AUPEC, GATE, GATEcv)

Usage

```
compute_qoi(fit_obj, algorithms)
```

Arguments

fit_obj An output object from fit_itr function.
algorithms Machine learning algorithms

compute_qoi_user

Compute Quantities of Interest (PAPE, PAPEp, PAPDp, AUPEC, GATE, GATEcv) with user defined functions

Description

Compute Quantities of Interest (PAPE, PAPEp, PAPDp, AUPEC, GATE, GATEcv) with user defined functions

Usage

```
compute_qoi_user(user_itr, Tcv, Ycv, data, ngates, budget, ...)
```

6 consist.test

Arguments

user_itr	A user-defined function to create an ITR. The function should take the data as input and return an unit-level continuous score for treatment assignment. We assume those that have score less than 0 should not have treatment. The default is NULL, which means the ITR will be estimated from the estimate_itr.
Tcv	A vector of the unit-level binary treatment.
Ycv	A vector of the unit-level continuous outcome.
data	A data frame containing the variables of interest.
ngates	The number of gates to be used in the GATE function.
budget	The maximum percentage of population that can be treated under the budget constraint.
• • •	Additional arguments to be passed to the user-defined function.
consist.test	The Consistency Test for Grouped Average Treatment Effects (GATEs) in Randomized Experiments

Description

This function calculates statistics related to the test of treatment effect consistency across groups.

Usage

```
consist.test(T, tau, Y, ngates = 5, nsim = 10000)
```

Arguments

Т	A vector of the unit-level binary treatment receipt variable for each sample.
tau	A vector of the unit-level continuous score. Conditional Average Treatment Effect is one possible measure.
Υ	A vector of the outcome variable of interest for each sample.
ngates	The number of groups to separate the data into. The groups are determined by tau. Default is 5.
nsim	Number of Monte Carlo simulations used to simulate the null distributions. Default is 10000.

Details

The details of the methods for this design are given in Imai and Li (2022).

Value

A list that contains the following items:

stat	The estimated statistic for the test of consistency
pval	The p-value of the null hypothesis (that the treatment effects are consistent)

consistev.test 7

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2022). "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments",

Examples

```
T = c(1,0,1,0,1,0,1,0) \\ tau = c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7) \\ Y = c(4,5,0,2,4,1,-4,3) \\ consisttestlist <- consist.test(T,tau,Y,ngates=5) \\ consisttestlist$stat \\ consisttestlist$pval
```

consistcv.test

The Consistency Test for Grouped Average Treatment Effects (GATEs) under Cross Validation in Randomized Experiments

Description

This function calculates statistics related to the test of treatment effect consistency across groups under cross-validation.

Usage

```
consistcv.test(T, tau, Y, ind, ngates = 5, nsim = 10000)
```

Arguments

T	A vector of the unit-level binary treatment receipt variable for each sample.
tau	A vector of the unit-level continuous score. Conditional Average Treatment Effect is one possible measure.
Υ	A vector of the outcome variable of interest for each sample.
ind	A vector of integers (between 1 and number of folds inclusive) indicating which testing set does each sample belong to.
ngates	The number of groups to separate the data into. The groups are determined by tau. Default is 5.
nsim	Number of Monte Carlo simulations used to simulate the null distributions. Default is 10000.

Details

The details of the methods for this design are given in Imai and Li (2022).

8 create_ml_args

Value

A list that contains the following items:

stat The estimated statistic for the test of consistency under cross-validation.

pval The p-value of the null hypothesis (that the treatment effects are consistent)

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2022). "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments",

Examples

```
 T = c(1,0,1,0,1,0,1,0) \\ tau = matrix(c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7,0.9), nrow = 8, ncol = 2) \\ Y = c(4,5,0,2,4,1,-4,3) \\ ind = c(rep(1,4),rep(2,4)) \\ consisttestlist <- consistcv.test(T,tau,Y,ind,ngates=2) \\ consisttestlist$stat \\ consisttestlist$pval
```

create_ml_args

Create general arguments

Description

Create general arguments

Usage

```
create_ml_args(data)
```

Arguments

data

A dataset

9 create_ml_args_bart

create_ml_args_bart

Create arguments for bartMachine

Description

Create arguments for bartMachine

Usage

```
create_ml_args_bart(data)
```

Arguments

data

A dataset

 $create_ml_args_bartc \quad \textit{Create arguments for bartCause}$

Description

Create arguments for bartCause

Usage

```
create_ml_args_bartc(data)
```

Arguments

data

A dataset

```
create_ml_args_causalforest
```

Create arguments for causal forest

Description

Create arguments for causal forest

Usage

```
create_ml_args_causalforest(data)
```

Arguments

data

A dataset

10 create_ml_args_svm

Description

Create arguments for LASSO

Usage

```
create_ml_args_lasso(data)
```

Arguments

data

A dataset

create_ml_args_superLearner

Create arguments for super learner

Description

Create arguments for super learner

Usage

```
create_ml_args_superLearner(data)
```

Arguments

data

A dataset

create_ml_args_svm

Create arguments for SVM

Description

Create arguments for SVM

Usage

```
create_ml_args_svm(data)
```

Arguments

data

A dataset

create_ml_args_svm_cls

create_ml_args_svm_cls

Create arguments for SVM classification

Description

Create arguments for SVM classification

Usage

```
create_ml_args_svm_cls(data)
```

Arguments

data A dataset

create_ml_arguments

Create arguments for ML algorithms

Description

Create arguments for ML algorithms

Usage

```
create_ml_arguments(outcome, treatment, data)
```

Arguments

outcome Outcome of interests
treatment Treatment variable

data A dataset

12 estimate_itr

estimate_itr

Estimate individual treatment rules (ITR)

Description

Estimate individual treatment rules (ITR)

Usage

```
estimate_itr(
  treatment,
  form,
  data,
  algorithms,
  budget,
  n_folds = 5,
  split_ratio = 0,
  ngates = 5,
  preProcess = NULL,
 weights = NULL,
  trControl = caret::trainControl(method = "none"),
  tuneGrid = NULL,
  tuneLength = ifelse(trControl$method == "none", 1, 3),
  user_model = NULL,
  SL_library = NULL,
)
```

Arguments

treatment	Treatment variable
form	a formula object that takes the form $y \sim T + x1 + x2 + \dots$
data	A data frame that contains the outcome y and the treatment T.
algorithms	List of machine learning algorithms to be used.
budget	The maximum percentage of population that can be treated under the budget constraint.
n_folds	Number of cross-validation folds. Default is 5.
split_ratio	Split ratio between train and test set under sample splitting. Default is 0.
ngates	The number of groups to separate the data into. The groups are determined by tau. Default is 5.
preProcess	caret parameter
weights	caret parameter
trControl	caret parameter
tuneGrid	caret parameter

evaluate_itr 13

tuneLength caret parameter

user_model A user-defined function to create an ITR. The function should take the data as input and return a model to estimate the ITR.

SL_library A list of machine learning algorithms to be used in the super learner.

Additional arguments passed to caret::train

Value

An object of itr class

evaluate_itr

Evaluate ITR

Description

Evaluate ITR

Usage

```
evaluate_itr(
   fit = NULL,
   user_itr = NULL,
   outcome = c(),
   treatment = c(),
   data = list(),
   budget = 1,
   ngates = 5,
   ...
)
```

Arguments

fit Fitted model. Usually an output from estimate_itr user_itr A user-defined function to create an ITR. The function should take the data as input and return an unit-level continuous score for treatment assignment. We assume those that have score less than 0 should not have treatment. The default is NULL, which means the ITR will be estimated from the estimate_itr. outcome A character string of the outcome variable name. treatment A character string of the treatment variable name. data A data frame containing the variables specified in outcome, treatment, and budget The maximum percentage of population that can be treated under the budget constraint.

14 fit_itr

ngates The number of gates to use for the ITR. The default is 5. A user-defined function

to create an ITR. The function should take the data as input and return an ITR. The output is a vector of the unit-level binary treatment that would have been assigned by the individualized treatment rule. The default is NULL, which means the ITR will be estimated from the estimate_itr. See ?evaluate_itr for an

example.

. . . Further arguments passed to the function.

Value

An object of itr class

fit_itr

Estimate ITR for Single Outcome

Description

Estimate ITR for Single Outcome

Usage

```
fit_itr(data, algorithms, params, folds, budget, user_model, ...)
```

Arguments

data A dataset.

algorithms Machine learning algorithms.

params A list of parameters.

folds Number of folds.

budget The maximum percentage of population that can be treated under the budget

constraint.

user_model User's own function to estimated the ITR.

... Additional arguments passed to caret::train

Value

A list of estimates.

GATE 15

GATE	Estimation of the Grouped Average Treatment Effects (GATEs) in Ran-
	domized Experiments

Description

This function estimates the Grouped Average Treatment Effects (GATEs) where the groups are determined by a continuous score. The details of the methods for this design are given in Imai and Li (2022).

Usage

```
GATE(T, tau, Y, ngates = 5)
```

Arguments

T	A vector of the unit-level binary treatment receipt variable for each sample.
tau	A vector of the unit-level continuous score. Conditional Average Treatment Effect is one possible measure.
Υ	A vector of the outcome variable of interest for each sample.
ngates	The number of groups to separate the data into. The groups are determined by tau. Default is 5.

Value

A list that contains the following items:

gate	The estimated vector of GATEs of length ngates arranged in order of increasing tau.
sd	The estimated vector of standard deviation of GATEs.

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2022). "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments",

16 GATEcv

Examples

```
T = c(1,0,1,0,1,0,1,0)
tau = c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7)
Y = c(4,5,0,2,4,1,-4,3)
gatelist <- GATE(T,tau,Y,ngates=5)
gatelist$gate
gatelist$sd</pre>
```

GATEcv

Estimation of the Grouped Average Treatment Effects (GATEs) in Randomized Experiments Under Cross Validation

Description

This function estimates the Grouped Average Treatment Effects (GATEs) under cross-validation where the groups are determined by a continuous score. The details of the methods for this design are given in Imai and Li (2022).

Usage

```
GATEcv(T, tau, Y, ind, ngates = 5)
```

Arguments

T	A vector of the unit-level binary treatment receipt variable for each sample.
tau	A matrix where the ith column is the unit-level continuous score for treatment assignment generated in the ith fold. Conditional Average Treatment Effect is one possible measure.
Υ	A vector of the outcome variable of interest for each sample.
ind	A vector of integers (between 1 and number of folds inclusive) indicating which testing set does each sample belong to.
ngates	The number of groups to separate the data into. The groups are determined by tau. Default is 5.

Value

A list that contains the following items:

gate	The estimated vector of GATEs under cross-validation of length ngates ar-
	ranged in order of increasing tau.
sd	The estimated vector of standard deviation of GATEs under cross-validation.

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

het.test 17

References

Imai and Li (2022). "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments",

Examples

```
 T = c(1,0,1,0,1,0,1,0) \\ tau = matrix(c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7,0.9), nrow = 8, ncol = 2) \\ Y = c(4,5,0,2,4,1,-4,3) \\ ind = c(rep(1,4),rep(2,4)) \\ gatelist <- GATEcv(T, tau, Y, ind, ngates = 2) \\ gatelist$gate \\ gatelist$sd
```

het.test

The Heterogeneity Test for Grouped Average Treatment Effects (GATEs) in Randomized Experiments

Description

This function calculates statistics related to the test of heterogeneous treatment effects across groups.

Usage

```
het.test(T, tau, Y, ngates = 5)
```

Arguments

T A vector of the unit-level binary treatment receipt variable for each sample.

tau A vector of the unit-level continuous score. Conditional Average Treatment

Effect is one possible measure.

Y A vector of the outcome variable of interest for each sample.

ngates The number of groups to separate the data into. The groups are determined by

tau. Default is 5.

Details

The details of the methods for this design are given in Imai and Li (2022).

Value

A list that contains the following items:

stat The estimated statistic for the test of heterogeneity.

pval The p-value of the null hypothesis (that the treatment effects are homogeneous)

18 hetcv.test

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2022). "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments",

Examples

```
T = c(1,0,1,0,1,0,1,0) \\ tau = c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7) \\ Y = c(4,5,0,2,4,1,-4,3) \\ hettestlist <- het.test(T,tau,Y,ngates=5) \\ hettestlist$stat \\ hettestlist$pval
```

hetcv.test The Heterogeneity Test for Grouped Average Treatment Effects (GATEs) under Cross Validation in Randomized Experiments

Description

This function calculates statistics related to the test of heterogeneous treatment effects across groups under cross-validation.

Usage

```
hetcv.test(T, tau, Y, ind, ngates = 5)
```

Arguments

T	A vector of the unit-level binary treatment receipt variable for each sample.	
tau	A vector of the unit-level continuous score. Conditional Average Treatment Effect is one possible measure.	
Υ	A vector of the outcome variable of interest for each sample.	
ind	A vector of integers (between 1 and number of folds inclusive) indicating which testing set does each sample belong to.	
ngates	The number of groups to separate the data into. The groups are determined by tau. Default is 5.	

Details

The details of the methods for this design are given in Imai and Li (2022).

PAPD 19

Value

A list that contains the following items:

stat The estimated statistic for the test of heterogeneity under cross-validation.

pval The p-value of the null hypothesis (that the treatment effects are homogeneous)

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2022). "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments",

Examples

```
 T = c(1,0,1,0,1,0,1,0) \\ tau = matrix(c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7,0.9), nrow = 8, ncol = 2) \\ Y = c(4,5,0,2,4,1,-4,3) \\ ind = c(rep(1,4),rep(2,4)) \\ hettestlist <- hetcv.test(T,tau,Y,ind,ngates=2) \\ hettestlist$stat \\ hettestlist$pval
```

PAPD

Estimation of the Population Average Prescription Difference in Randomized Experiments

Description

This function estimates the Population Average Prescription Difference with a budget constraint. The details of the methods for this design are given in Imai and Li (2019).

Usage

```
PAPD(T, Thatfp, Thatgp, Y, budget, centered = TRUE)
```

Arguments

T A vector of the unit-level binary treatment receipt variable for each sample.

Thatfp A vector of the unit-level binary treatment that would have been assigned by the

first individualized treatment rule. Please ensure that the percentage of treatment

units of That is lower than the budget constraint.

That gp A vector of the unit-level binary treatment that would have been assigned by

the second individualized treatment rule. Please ensure that the percentage of

treatment units of That is lower than the budget constraint.

PAPDcv

Y A vector of the outcome variable of interest for each sample.

budget The maximum percentage of population that can be treated under the budget

constraint. Should be a decimal between 0 and 1.

centered If TRUE, the outcome variables would be centered before processing. This mini-

mizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

papd The estimated Population Average Prescription Difference

sd The estimated standard deviation of PAPD.

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2019). "Experimental Evaluation of Individualized Treatment Rules",

Examples

```
T = c(1,0,1,0,1,0,1,0)
That = c(0,1,1,0,0,1,1,0)
That2 = c(1,0,0,1,1,0,0,1)
Y = c(4,5,0,2,4,1,-4,3)
papdlist <- PAPD(T,That,That2,Y,budget = 0.5)
papdlist$papd
papdlist$sd</pre>
```

PAPDcv

Estimation of the Population Average Prescription Difference in Randomized Experiments Under Cross Validation

Description

This function estimates the Population Average Prescription Difference with a budget constaint under cross validation. The details of the methods for this design are given in Imai and Li (2019).

Usage

```
PAPDcv(T, Thatfp, Thatgp, Y, ind, budget, centered = TRUE)
```

PAPDcv 21

Arguments

T A vector of the unit-level binary treatment receipt variable for each sample.

Thatfp A matrix where the ith column is the unit-level binary treatment that would

have been assigned by the first individualized treatment rule generated in the ith fold. Please ensure that the percentage of treatment units of That is lower

than the budget constraint.

That A matrix where the ith column is the unit-level binary treatment that would have

been assigned by the second individualized treatment rule generated in the ith fold. Please ensure that the percentage of treatment units of That is lower than

the budget constraint.

Y The outcome variable of interest.

ind A vector of integers (between 1 and number of folds inclusive) indicating which

testing set does each sample belong to.

budget The maximum percentage of population that can be treated under the budget

constraint. Should be a decimal between 0 and 1.

centered If TRUE, the outcome variables would be centered before processing. This mini-

mizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

papd The estimated Population Average Prescription Difference.

sd The estimated standard deviation of PAPD.

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2019). "Experimental Evaluation of Individualized Treatment Rules",

Examples

```
 T = c(1,0,1,0,1,0,1,0) \\ That = matrix(c(0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1), nrow = 8, ncol = 2) \\ That2 = matrix(c(0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0), nrow = 8, ncol = 2) \\ Y = c(4,5,0,2,4,1,-4,3) \\ ind = c(rep(1,4),rep(2,4)) \\ papdlist <- PAPDcv(T, That, That2, Y, ind, budget = 0.5) \\ papdlist$papd \\ papdlist$sd
```

PAPE PAPE

PAPE	Estimation of the Population Average Prescription Effect in Randomized Experiments
	izea Experimento

Description

This function estimates the Population Average Prescription Effect with and without a budget constraint. The details of the methods for this design are given in Imai and Li (2019).

Usage

```
PAPE(T, That, Y, budget = NA, centered = TRUE)
```

Arguments

T	A vector of the unit-level binary treatment receipt variable for each sample.
That	A vector of the unit-level binary treatment that would have been assigned by the individualized treatment rule. If budget is specified, please ensure that the percentage of treatment units of That is lower than the budget constraint.
Υ	A vector of the outcome variable of interest for each sample.
budget	The maximum percentage of population that can be treated under the budget constraint. Should be a decimal between 0 and 1. Default is NA which assumes no budget constraint.
centered	If TRUE, the outcome variables would be centered before processing. This minimizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

pape The estimated Population Average Prescription Effect.

sd The estimated standard deviation of PAPE.

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2019). "Experimental Evaluation of Individualized Treatment Rules",

PAPEcv 23

Examples

```
T = c(1,0,1,0,1,0,1,0)

That = c(0,1,1,0,0,1,1,0)

Y = c(4,5,0,2,4,1,-4,3)

papelist <- PAPE(T,That,Y)

papelist$pape

papelist$sd
```

PAPEcv

Estimation of the Population Average Prescription Effect in Randomized Experiments Under Cross Validation

Description

This function estimates the Population Average Prescription Effect with and without a budget constraint. The details of the methods for this design are given in Imai and Li (2019).

Usage

```
PAPEcv(T, That, Y, ind, budget = NA, centered = TRUE)
```

Arguments

T	A vector of the unit-level binary treatment receipt variable for each sample.
That	A matrix where the ith column is the unit-level binary treatment that would have been assigned by the individualized treatment rule generated in the ith fold. If budget is specified, please ensure that the percentage of treatment units of That is lower than the budget constraint.
Υ	The outcome variable of interest.
ind	A vector of integers (between 1 and number of folds inclusive) indicating which testing set does each sample belong to.
budget	The maximum percentage of population that can be treated under the budget constraint. Should be a decimal between 0 and 1. Default is NA which assumes no budget constraint.
centered	If TRUE, the outcome variables would be centered before processing. This mini-

mizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

pape The estimated Population Average Prescription Effect.

sd The estimated standard deviation of PAPE.

24 PAV

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2019). "Experimental Evaluation of Individualized Treatment Rules",

Examples

```
T = c(1,0,1,0,1,0,1,0)
That = matrix(c(0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1), nrow = 8, ncol = 2)
Y = c(4,5,0,2,4,1,-4,3)
ind = c(rep(1,4),rep(2,4))
papelist <- PAPEcv(T, That, Y, ind)
papelist$pape
papelist$sd
```

PAV

Estimation of the Population Average Value in Randomized Experiments

Description

This function estimates the Population Average Value. The details of the methods for this design are given in Imai and Li (2019).

Usage

```
PAV(T, That, Y, centered = TRUE)
```

Arguments

T A vector of the unit-level binary treatment receipt variable for each sample.

That A vector of the unit-level binary treatment that would have been assigned by

the individualized treatment rule. If budget is specified, please ensure that the

percentage of treatment units of That is lower than the budget constraint.

Y A vector of the outcome variable of interest for each sample.

centered If TRUE, the outcome variables would be centered before processing. This mini-

mizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

pav The estimated Population Average Value. sd The estimated standard deviation of PAV. PAVcv 25

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2019). "Experimental Evaluation of Individualized Treatment Rules",

Examples

```
T = c(1,0,1,0,1,0,1,0)
That = c(0,1,1,0,0,1,1,0)
Y = c(4,5,0,2,4,1,-4,3)
pavlist <- PAV(T,That,Y)
pavlist$pav
pavlist$sd
```

PAVcv

Estimation of the Population Average Value in Randomized Experiments Under Cross Validation

Description

This function estimates the Population Average Value. The details of the methods for this design are given in Imai and Li (2019).

Usage

```
PAVcv(T, That, Y, ind, centered = TRUE)
```

Arguments

T	A vector of the unit-level binary treatment receipt variable for each sample.
That	A matrix where the ith column is the unit-level binary treatment that would have been assigned by the individualized treatment rule generated in the ith fold. If budget is specified, please ensure that the percentage of treatment units of That is lower than the budget constraint.
Υ	The outcome variable of interest.
ind	A vector of integers (between 1 and number of folds inclusive) indicating which testing set does each sample belong to.

If TRUE, the outcome variables would be centered before processing. This mini-

mizes the variance of the estimator. Default is TRUE.

Value

centered

A list that contains the following items:

pav The estimated Population Average Value. sd The estimated standard deviation of PAV. 26 plot.itr

Author(s)

Michael Lingzhi Li, Technology and Operations Management, Harvard Business School <mili@hbs.edu>, https://www.michaellz.com/;

References

Imai and Li (2019). "Experimental Evaluation of Individualized Treatment Rules",

Examples

```
 T = c(1,0,1,0,1,0,1,0)  That = matrix(c(0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1), nrow = 8, ncol = 2) 
 Y = c(4,5,0,2,4,1,-4,3) 
 ind = c(rep(1,4),rep(2,4)) 
 pavlist <- PAVcv(T, That, Y, ind) 
 pavlist$pav 
 pavlist$sd
```

plot.itr

Plot the AUPEC curve

Description

Plot the AUPEC curve

Usage

```
## S3 method for class 'itr'
plot(x, ...)
```

Arguments

x An object of evaluate_itr() class. This is typically an output of evaluate_itr() function.

... Further arguments passed to the function.

Value

A plot of ggplot2 object.

plot_estimate 27

plot_estimate

Plot the GATE estimate

Description

Plot the GATE estimate

Usage

```
plot_estimate(x, type, ...)
```

Arguments

x An table object. This is typically an output of evaluate_itr() function.

type The metric that you wish to plot. One of GATE, PAPE, PAPEp, or PAPDp.

... Further arguments passed to the function.

Value

A plot of ggplot2 object.

Description

Print

Usage

```
## S3 method for class 'summary.itr'
print(x, ...)
```

Arguments

An object of summary.itr class. This is typically an output of summary.itr() function.

. . . Other parameters. Currently not supported.

28 star

Description

Print

Usage

```
## S3 method for class 'summary.test_itr'
print(x, ...)
```

Arguments

x An object of summary.test_itr class. This is typically an output of summary.test_itr() function.

... Other parameters.

star

Tennessee's Student/Teacher Achievement Ratio (STAR) project

Description

A longitudinal study experimentally evaluating the impacts of class size in early education on various outcomes (Mosteller, 1995)

Usage

star

Format

A data frame with 1911 observations and 14 variables:

treatment A binary treatment indicating whether a student is assigned to small class and regular class without an aid

g3tlangss A continous variable measuring student's writing scores

g3treadss A continous variable measuring student's reading scores

g3tmathss A continous variable measuring student's math scores

gender Students' gender

race Students' race

birthmonth Students' birth month **birthyear** Students' birth year

summary.itr 29

```
SCHLURBN Urban or rural
```

GKENRMNT Enrollment size

GRDRANGE Grade range

GKFRLNCH Number of students on free lunch

GKBUSED Number of students on school buses

GKWHITE Percentage of white students

summary.itr

Summarize estimate_itr output

Description

Summarize estimate_itr output

Usage

```
## S3 method for class 'itr'
summary(object, ...)
```

Arguments

object An object of estimate_itr class (typically an output of estimate_itr() func-

tion).

... Other parameters.

summary.test_itr

Summarize test_itr output

Description

Summarize test_itr output

Usage

```
## S3 method for class 'test_itr'
summary(object, ...)
```

Arguments

object An object of test_itr class (typically an output of test_itr() function).

... Other parameters.

30 test_itr

test_itr	Conduct hypothesis tests
CC3C_1 CI	Conduct hypothesis tesis

Description

Conduct hypothesis tests

Usage

```
test_itr(fit, nsim = 1000, ...)
```

Arguments

fit Fitted model. Usually an output from estimate_itr

nsim Number of Monte Carlo simulations used to simulate the null distributions. De-

fault is 1000.

... Further arguments passed to the function.

Value

An object of test_itr class

Index

* datasets	GATECV, 16
star, 28	hat took 17
* evaluation	het.test, 17
AUPEC, 3	hetcv.test, 18
AUPECcv, 4	PAPD, 19
consist.test, 6	PAPDcv, 20
consistcv.test,7	PAPE, 22
GATE, 15	PAPECV, 23
GATECV, 16	PAV, 24
het.test, 17	PAVcv, 25
hetcv.test, 18	
PAPD, 19	plot.itr, 26
PAPDcv, 20	plot_estimate, 27
PAPE, 22	print.summary.itr, 27
PAPEcv, 23	<pre>print.summary.test_itr, 28</pre>
PAV, 24	star, 28
PAVcv, 25	summary.itr, 29
	summary.test_itr, 29
AUPEC, 3	Summar y. test_1tr, 27
AUPECev, 4	test_itr, 30
<pre>compute_qoi, 5</pre>	
<pre>compute_qoi_user, 5</pre>	
consist.test, 6	
consistcv.test,7	
<pre>create_ml_args, 8</pre>	
<pre>create_ml_args_bart, 9</pre>	
<pre>create_ml_args_bartc, 9</pre>	
<pre>create_ml_args_causalforest, 9</pre>	
<pre>create_ml_args_lasso, 10</pre>	
<pre>create_ml_args_superLearner, 10</pre>	
<pre>create_ml_args_svm, 10</pre>	
<pre>create_ml_args_svm_cls, 11</pre>	
<pre>create_ml_arguments, 11</pre>	
estimate_itr, 12	
evaluate_itr, 13	
fit_itr, 14	
GATE, 15	