--- title: "Installation" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Installation} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE, messsage = FALSE, warning = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE) ``` ### Installation You can install the released version of evalITR from [CRAN](https://CRAN.R-project.org) with: ```{r messsage = FALSE, warning = FALSE, eval=FALSE} # Install release version from CRAN (updating evalITR is the same command) install.packages("evalITR") ``` Or, you can install the development version of evalITR from [GitHub](https://github.com/) with: ``` {r messsage = FALSE, warning = FALSE, eval = FALSE} # install.packages("devtools") devtools::install_github("MichaelLLi/evalITR", ref = "causal-ml") ``` If you want to use the latest version of the package, you can install the development version of evalITR by specifying the branch name in `devtools::install_github`. ### Parallelization (Optional) if you have multiple cores, we recommendate using multisession futures and processing in parallel. This would increase computation efficiency and reduce the time to fit the model. ```{r messsage = FALSE, warning = FALSE, eval=FALSE} library(furrr) library(future.apply) # check the number of cores parallel::detectCores() # set the number of cores nworkers <- 4 plan(multisession, workers =nworkers) ```